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Definition:  An n-player, static game of complete information consists of 
an n-tuple of strategy sets and an n-tuple of payoff functions, denoted by 
G = {S1, … , Sn; u1, … , un}

Si, the strategy set of player i, is the set of all permissible moves for player i. 
We write si  Si for one of player i’s strategies.

ui, the payoff function of player i, is the utility, profit, etc. for player i, and 
depends on the strategies chosen by all the players: ui(s1, … , sn).



Example: Prisoners’ Dilemma

ConfessRemain Silent

–5 , 0–1 , –1Remain Silent

–4 ,–40 , –5Confess
Prisoner I

Prisoner II

Example: Battle of the Sexes

BalletBoxing

0 , 02 , 1Boxing

1 , 20 , 0Ballet

M

F



Definition: A Nash equilibrium of G (in pure strategies) consists of a strategy 
for every player with the property that no player can improve her payoff by 
unilaterally deviating: 

(s1*, … , sn*) with the property that, for every player i:

ui (s1*, … , si–1*, si*, si+1*, … , sn*) 

 ui (s1*, … , si–1*, si, si+1*, … , sn*) 

for all si  Si.

Equivalently, a Nash equilibrium is a mutual best response. That is, for every 
player i, si* is a solution to:

Example: Prisoners’ Dilemma

ConfessRemain Silent

–5 , 0–1 , –1Remain Silent

–4 ,–40 , –5Confess
Prisoner I

Prisoner II



Example: Battle of the Sexes

BalletBoxing

0 , 02 , 1Boxing

1 , 20 , 0Ballet

M

F

Cournot (1838) Model of Oligopoly
(a) n firms
(b) Each firm i has a constant marginal (and average) cost of ci
(c) Inverse aggregate demand function of P(Q)
(d) Each firm simultaneously and independently selects a strategy consisting of a 

quantity qi  [0, a] (where P(a) = 0)

Then, with two firms, the payoff functions are:

and the strategy sets are:

S1 = [0, a]               S2 = [0, a]

It is often also convenient to assume a common marginal cost (i.e.,  c1 = c = c2) and 
a linear demand curve P(Q) = a – Q.



Solution of Cournot Model with Two Firms
(q1*, q2*) is a Nash equilibrium if and only if:

q1* solves max{q1 [P(q1 + q2*) – c]}
q1

and
q2* solves max{q2 [P(q1* + q2) – c]}.

q2

With P(Q) = a – Q, we get first order conditions:

q1(–1) + a – q1 – q2* – c|q1 = q1* = 0
 (1) a – 2q1* – q2* = c

and:q2(–1) + a – q1* – q2 – c|q2 = q2* = 0
 (2)  a – q1* – 2q2* = c

Subtracting (1) – (2) gives:
q2* – q1* = 0

Substituting q2* = q1* into (1) gives:
a – 2q1* – q1* = c

q1* = 𝒂ష𝒄
𝟑

;  q2* = 𝒂ష𝒄
𝟑

.

Best Response for Firm 1 to q2
P

Q

Original demand curve
D(p) = a – p

Residual demand curve after q2

D(p) = a – q2 – p

(0, a – q2)

(0, a)
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(a – q2 – c, c) (a – c, c)

R1(q2) = 
௔ି௤మି௖

ଶ

Similarly, the best response for firm 2 to q1 is:

R2(q1) = 
௔ି௤భି௖

ଶ



R2(q1)

R1(q2)

q1 a – c0

q2

Cournot Duopoly: Best Response Functions

a – c

Bertrand (1883) Model of Oligopoly
(a) n firms
(b) Each firm i has a constant marginal (and average) cost of ci
(c) Aggregate demand function of Q(P)
(d) Each firm simultaneously and independently selects a strategy consisting of a 

price pi  [0, a] (where Q(a) = 0)

Then, with two firms, the payoff functions are:

and



Bertrand (1883) Model of Oligopoly
As in the Cournot game, the strategy sets are:

S1 = [0, a]               S2 = [0, a]

and it is again usually convenient to assume a common marginal cost (i.e.,  c1 = c = c2).

The unique solution of the Bertrand game with two firms and common 
marginal cost c1 = c = c2 is as follows:

Bertrand (1883) Model of Oligopoly
Observation 1:  In any Nash equilibrium (p1

*, p2
*), it must be the case that p1

*  c and 

p2
*  c.

Proof: Suppose otherwise. Without loss of generality, say p1
*  p2

* and p1
* < c. Then 

firm 1 is currently earning strictly negative profits and could profitably deviate to p1
*  c

(thereby instead earning nonnegative profits).



Bertrand (1883) Model of Oligopoly
Observation 2:  In any Nash equilibrium (p1

*, p2
*), it must be the case that p1

* = p2
*.

Proof: Suppose otherwise. Without loss of generality, say p1
* < p2

* (and  p1
*  c). Then 

firm 2 is currently earning zero profits and, if  p1
* > c, firm 2 can profitably deviate to 

p2
* = p1

* – ε. Meanwhile, if p1
* = c, firm 1 can profitably deviate to p1

* = p2
* – ε.

Bertrand (1883) Model of Oligopoly
Observation 3:  The unique Nash equilibrium is (p1

*, p2
*) = (c, c).

Proof: By Observations 1 and 2, the only remaining possibility is p1
* = p* = p2

* > c. Then 
each firm is currently earning profits of:

and either firm could profitably deviate to p* – ε and thereby come arbitrarily close to 
earning:

Q.E.D.



The Pollution Game
Consumers have a choice of three different models of cars, which are identical in 
all respects except for price and emissions:

Model A: pA = $25,000; eA = 100 units
Model B: pB = $26,000; eB = 10 units
Model C: pC = $27,000; eC = 0 units

A consumer’s utility from using a car is given by: 

U = v – p – E

where v = reservation value of a car;
p = price paid for model bought;

E = = aggregate emissions (over all consumers) 
where ei = 100 or 10 or 0 , depending on 
which model is purchased by consumer i.

For any number of players, N, satisfying 11 < N < 100, the societal optimal choice 
is for every player to purchase Model B. Calculate:

Ui if every player purchases Model A =
= (v – 25,000 – E)
= (v – 25,000 – 100N)

Ui if every player purchases Model B =
= (v – 26,000 – E)
= (v – 26,000 – 10N)

Ui if every player purchases Model C =
= (v – 27,000 – E)
= (v – 27,000)

For example:
Ui if every player purchases Model A – Ui if every player purchases Model B =

= (v – 25,000 – 100N) – (v – 26,000 – 10N) < 0
 1,000 – 90N < 0   N > 11 



However, let E–i denote the total emissions from all of player i’s opponents.
Then:

Ui from Model A – Ui from Model B =
= (v – 25,000 – E–i – 100) – (v – 26,000 – E–i – 10)
= 1,000 – 90
= 910

and:
Ui from Model B – Ui from Model C =

= (v – 26,000 – E–i – 10) – (v – 27,000 – E–i – 0)
= 1,000 – 10
= 990

In conclusion, irrespective of the choices made by the other players, player i gets a 
higher payoff from Model A than from Model B, and player i gets a higher payoff 
from Model B than from Model C.

Dominated strategies:

Strategy si (strictly) dominates strategy si if, for all possible strategy combinations 
of opponents, si yields a (strictly) higher payoff than si to player i.

Iterated elimination of strictly dominated strategies:

Eliminate all strategies that are strictly dominated, relative to opponents’ strategies 
that have not yet been eliminated.



A few more notes on the Pollution Game.

This is a classic example of an externality: a situation where one player’s action 
enters directly into another player’s payoff function.

Broadly speaking, externalities can be addressed with either standards or taxes.

The appropriate standard in this model: it is only legal to sell Model B (or better).

How do you calculate the appropriate tax?

The private cost of Model A (instead of Model B) = 100 – 10 = 90

The social cost of Model A (instead of Model B) = (100 – 10)  N = 90N

The appropriate tax is the difference between the social cost and the private cost, 
here 90(N – 1).

This is the amount that leads the decision maker to internalize the externality.

Approximately the same outcome can be reached with a tax on Model A or with a 
subsidy on Model B. However, there may be general equilibrium effects.

Dominated strategies:

Strategy si (strictly) dominates strategy si if, for all possible strategy combinations 
of opponents, si yields a (strictly) higher payoff than si to player i.

Iterated elimination of strictly dominated strategies:

Eliminate all strategies that are strictly dominated, relative to opponents’ strategies 
that have not yet been eliminated.



Example: Prisoners’ Dilemma

ConfessRemain Silent

–5 , 0–1 , –1Remain Silent

–4 ,–40 , –5Confess
Prisoner I

Prisoner II

Right

4 , 11 , 2Top

2 , 1

1 , 32 , 1Bottom

Player I

Player II

Bottom is strictly dominated by Middle (for Player I)

Right is strictly dominated by Left (for Player II)

Top is strictly dominated by Middle (for Player I)

Middle

Left

3 , 2



Results on Iterated Elimination of Strictly Dominated Strategies

Proposition 1:  If iterated elimination of strictly dominated strategies yields a 
unique strategy n-tuple, then this strategy n-tuple is the unique Nash equilibrium 
(and it is a strict Nash equilibrium). [See Gibbons text, pp. 12 – 14.]

(Definition: A strict Nash equilibrium is a strategy n-tuple with the property
that every unilateral deviation makes the deviator strictly worse off.)

Proposition 2:  Every Nash equilibrium survives iterated elimination of strictly 
dominated strategies.

Proposition 3:  Iterated elimination of strictly dominated strategies is order-
independent.

Proposition 2:  Every Nash equilibrium survives iterated elimination of strictly 
dominated strategies.

Proof: Suppose not. Then there is a Nash equilibrium s* = (s1
*, … , si

*, … , sn
*) that 

gets eliminated. Without loss of generality, assume that si
* is the first component of s*

that is eliminated. Let us say that when si
* is eliminated, it is eliminated by si. Then 

ui(s1, … , si, … , sn) > ui(s1, … , si
*, … , sn) for each (s1, … , si-1, si+1, … , sn) that can 

be constructed from strategies that have not yet been eliminated. In particular, since 
si

* was assumed to be the first component of s* to be eliminated, we can select 
(s1

*, … , si-1
*, si+1

*, … , sn
*) for the opponents’ strategies.  This implies that:

ui(s1
*, … , si, … , sn

*) > ui(s1
*, … , si

*, … , sn
*),

i.e., si is a profitable unilateral deviation for i against (s1
*, … , si-1

*, si+1
*, … , sn

*), 
contradicting our hypothesis that s* is a Nash equilibrium. ■



The Problem

Each of you have to choose an integer between 0 and 9, with the objective of guessing 
“2/3 of the average of the responses given by all students in the course”.

Each student who guesses an integer which is closest to 2/3 of the average of all of the 
responses rounded up to the nearest integer, wins. The winners equally divide a prize.

What is your guess?

Guess 2/3 of the Average

9876543210

0

1

2

3

4

5

6

7

8

9



9876543210

0

1

2

3

4

5

6

7

8

9

q1 10

1

q2

R1(q2)

R2(q1)

Cournot Duopoly: Best Response Functions



q1 10

1

q2

q1 > ½ is strictly dominated by q1 = ½
q2 > ½ is strictly dominated by q2 = ½
q1 < ¼ is strictly dominated by q1 = ¼
q2 < ¼ is strictly dominated by q2 = ¼

R1(q2)

R2(q1)

Example: Matching Pennies

TailsHeads

–1 ,  11 , –1Heads

1 , –1–1 ,  1Tails

I

II



Definition: Let player i have K pure strategies available. Then a mixed strategy
for player i is a probability distribution over those K strategies.

Notation:
Strategy set:

S
i
= {s

i1 
,… , s

iK
}

Mixed strategy:
p

i
= (p

i1 
,… , p

iK
)

such that

and each pik is between zero and one (0  pik  1).

Facts:

1. Theorem (Nash, 1950):
Every finite game has at least one Nash equilibrium (when mixed 
strategies are permitted).

2. If, in a mixed-strategy Nash equilibrium, player i places positive 
probability on each of two strategies, then player i must be indifferent 
between these two strategies (i.e., they yield player i the same expected 
payoff).



Let q denote the probability with which Player I plays H, 
and let r denote the probability with which Player II plays H.

We will solve for the NE by determining the value of r that 
makes Player I indifferent between H and T, and the value 
of q that makes Player II indifferent between H and T. 

EUI(H) = r(1) + (1 – r)(–1) = 2r – 1.

EUI(T) = r(–1) + (1 – r)(1) = 1 – 2r.

Player I is indifferent between H and T if and only if:

EUI(H) = EUI(T)  2r – 1 = 1 – 2r r = ½ .

Similarly:

EUII(H) = q(–1) + (1 – q)(1) = 1 – 2q.

EUII(T) = q(1) + (1 – q)(–1) = 2q – 1.

Player II is indifferent between H and T if and only if:

EUII(H) = EUII(T)  1 – 2q = 2q – 1  q = ½ .

Best response correspondence of Player 2

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)
½

r*(q)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads



Best response correspondence of Player 1

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)

½
q*(r)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads

Matching Pennies

r

q

(Heads)   1

1
(Heads)

(Tails)

(Tails)

½
q*(r)

Probability Player 2
Plays Heads

Probability
Player 1 
Plays Heads½

r*(q)



Example: Battle of the Sexes

BalletBoxing

0 , 02 , 1Boxing

1 , 20 , 0Ballet

M

F

Let q denote the probability with which M plays Boxing, 
and let r denote the probability with which F plays Boxing.

We will solve for the NE by determining the value of r that 
makes M indifferent between Boxing and Ballet, and the value 
of q that makes F indifferent between Boxing and Ballet. 

EUM(Boxing) = r(2) + (1 – r)(0) = 2r.

EUM(Ballet)   = r(0) + (1 – r)(1) = 1 – r.

M is indifferent between Boxing and Ballet if and only if:

EUM(Boxing) = EUM(Ballet)  2r = 1 – r r = 1/3  .

Similarly:

EUF(Boxing) = q(1) + (1 – q)(0) = q.

EUF(Ballet)   = q(0) + (1 – q)(2) = 2 – 2q.

F is indifferent between Boxing and Ballet if and only if:

EUF(Boxing) = EUF(Ballet)  q = 2 – 2q q = 2/3 .



Battle of the Sexes

r

q

(Boxing) 1

1
(Boxing)

(Ballet)

(Ballet)

⅔

⅓

Probability
Player M 

Plays Boxing

Probability Player F
Plays Boxing

Correlated Equilibrium I: Public Randomizing Device

BalletBoxing

0 , 02 , 1Boxing

1 , 20 , 0Ballet
M

F

Suppose that there exists a public randomizing device that comes up “heads” 
½ the time and “tails” ½ the time.
Then the players could agree to play {Boxing, Boxing} when “heads” and 
{Ballet, Ballet} when “tails”.
Example: Play {Boxing, Boxing} when the closing DJIA is an even number and 
play {Ballet, Ballet} when it is an odd number; achieving E payoffs of (3/2, 3/2) 
— better than the mixed strategy Nash equilibrium.



Correlated Equilibrium II: Mediated communication

RL

0 , 05 , 1T

1 , 54 , 4B
I

II
Consider the following game:

A public randomizing device of ½ – ½ enables us to obtain expected payoffs of (3, 3).

However, a mediator could randomize among three instructions — (T,L), (B,L) and (B,R). 
The mediator tells player I whether to play T or B (but not what he has told player II). 
Similarly, he tells player II whether to play L or R (but not what he has told player I).

It can be shown: (i) if Prob(T,L) = 1/3, Prob(B,R) = 1/3, and Prob(B,L) = 1/3, then no player 
has any incentive to deviate from these instructions; and (ii) E payoffs are now (10/3, 10/3)!

Correlated Equilibrium II: Mediated communication

RL

01/2T

1/20B
I

II
In greater detail:

This is clearly incentive compatible and enables the players to obtain expected payoffs of 
(3,3).



Bayes’ Rule

A, B = events
P(A|B) = probability of A given B is true
P(B|A) = probability of B given A is true
P(A), P(B)   = the independent probabilities of A and B

Correlated Equilibrium II: Mediated communication

RL

01/3T

1/31/3B
I

II
In greater detail:

By Bayes’ law, Prob (II is told R | I is told B) = 

Meanwhile, Prob (II is told R | I is told T) = 0.

Hence, player I’s E payoff from playing B when told to play B is  ½ (4) + ½ (1) = 2 ½ . 
Player I’s E payoff from playing T when told to play B is also ½ (5) + ½ (0) = 2 ½ .

Thus: (i) it is incentive compatible for Player I to follow the mediator’s instructions (and 
symmetrically for Player II); and (ii) E payoffs are now (10/3, 10/3)!



Correlated Equilibrium II: Mediated communication

RL

0½ (1 – p)T

½ (1 – p)pB
I

II
Derivation (limiting attention to symmetric correlated equilibria):

By Bayes’ law, Prob (II is told R | I is told B) =               .

By Bayes’ law, Prob (II is told L | I is told B) =               .

Optimal correlated equilibrium:

1
2

1
2

(1 )

(1 )

p

p p



 

1
2 (1 )

p

p p 

 1 1
2 2[0,1]

1 1
2 2

max 4 (1 ) 5 (1 ) 1

 s.t. 1 5 04 (1 ) (1 )

p
p p p

p p p p


      

       

Results on correlated equilibrium:

1. With attention limited to public randomizing devices, the set of outcomes 
of correlated equilibria is the convex combination of all (pure- and mixed-
strategy) Nash equilibrium outcomes.

2. With mediated communication possible, one can sometimes construct 
correlated equilibria that outperform any convex combination of Nash 
equilibria—see, for example, the previous slides.



Nash Existence Theorem (Nash, 1950):

Every finite game has at least one Nash equilibrium 
(when mixed strategies are permitted).

Definition of finite game:

• Finitely many players; and

• Each player’s strategy set, Si, is finite.

Common fixed point theorems in economics:

Banach Fixed Point Theorem (contraction mapping theorem):
Suppose that ( X , d ) is a complete metric space. Also suppose that the function
f : X  X is a contraction mapping, i.e., d ( f (x ) , f (y ) )  ≤  d (x , y ) for  < 1.
Then there exists a unique fixed point of f, i.e., a point x  X such that x = f (x).

Tarski Fixed Point Theorem:
Suppose that ( X ,≤ ) is a complete lattice. Also suppose that the function
f : X  X is monotonic with respect to ≤. Then there exists a fixed point of f, 
i.e., a point x  X such that x = f (x), and the set of fixed points of f in X also
forms a complete lattice under  ≤ .



This and next class (Nash existence theorem):

Brouwer Fixed Point Theorem:
Suppose that X is a nonempty, compact, convex set in . Also suppose
that the function f : X  X is continuous. Then there exists a fixed point
of f, i.e., a point x  X such that x = f (x).

Kakutani Fixed Point Theorem:
Suppose X as above. Also suppose that the correspondence F : X  X
is nonempty and convex-valued, and that F(ꞏ) has a closed graph. Then
there exists a fixed point of F, i.e., a point x  X such that x  F (x).

x

yBrouwer Fixed Point Thm:

X
• nonempty

closed
• compact

bounded

• convex

• 

f

• function

• maps X  X

• continuous



Brouwer Fixed Point Theorem:
Suppose that X is a nonempty, compact, convex set in . Also suppose
that the function f : X  X is continuous. Then there exists a fixed point
of f, i.e., a point x  X such that x = f (x).

Kakutani Fixed Point Theorem:
Suppose X as above. Also suppose that the correspondence F : X  X
is nonempty and convex-valued, and that F(ꞏ) has a closed graph. Then
there exists a fixed point of F, i.e., a point x  X such that x  F (x).

Notes:

(1) The correspondence F() is said to have a closed graph if, simply, the graph of 
F() is a closed set. That is, F() has a closed graph if it has the property that whenever 
the sequence (xn , yn)  (x , y), with yn  F(xn) for every n, then y  F(x).

Essentially the same as upper hemicontinuity (u.h.c.).



x

yKakutani Fixed Point Thm:

X
• nonempty

closed
• compact

bounded

• convex

• 

F
• correspondence

• maps X  X

• nonempty- and 
convex-valued

• closed graph

Nash Existence Theorem (Nash, 1950):

Every finite game has at least one Nash equilibrium 
(when mixed strategies are permitted).



Notation: The correspondence F:

Fixed point:

We need:

X
• nonempty

closed
• compact

bounded

• convex

• 

F
• correspondence

• maps X  X

• nonempty- and 
convex-valued

• closed graph

• Continuous function on compact set has a maximum; hence, we require:

– closed or there may be no max

– bounded or there may be no max

– continuous or there may be no max

Nonempty-valued: For best response to exist, we need a 
maximum to exist



Notes:

(1) The correspondence F() is said to have a closed graph if, simply, the graph of 
F() is a closed set. That is, F() has a closed graph if it has the property that whenever 
the sequence (xn , yn)  (x , y), with yn  F(xn) for every n, then y  F(x).

Essentially the same as upper hemicontinuity (u.h.c.).

(2) The best-response correspondence BRi() of each player i has a closed graph, 
by the following argument.

Suppose that there is a sequence (xn , yn)  (x , y) such that yn  BRi(x
n) for every n, 

but y  BRi(x). Then there exists  > 0 and y   y such that:

ui(y , x)  >  ui(y, x) +  .

But this contradicts:

ui(y , x
n)   ui(y

n, xn) , for every n.

Example of using Brouwer Fixed Point Thm to prove existence of equilibrium.

Consider an n-firm Cournot game with fairly general demand curves and marginal costs:

i(qi,q-i) = [P(qi + q-i) – ci ] qi ,

making the assumption that  arg max   {[P(qi + q-i) – ci ] qi } is always single-valued.
qi

Then we can define X = [0, a]n and use the following f:

The Brouwer Fixed Point Theorem guarantees that f has a fixed point.



Product Differentiation: The Hotelling Model

Consumers are uniformly distributed on the interval [0, 1].
There are two firms, located at x = 0 and x = 1, which each

produce the same physical good at marginal cost of c.
Consumers have transportation cost t per unit of distance.

Firm 1 Firm 2x

0 1
cost tx cost t(1 – x)

Each consumer consumes 0 or 1 units of the good:
u(0) = 0;   u(1) = v.

If firm 1 charges p1 and firm 2 charges p2, the consumer
located at x gets v – p1 – tx from purchasing at firm 1 and
gets v – p2 – t(1 – x) from purchasing at firm 2.

Let     denote the customer who is indifferent between purchasing at firm 1 and firm 2. 
Then:

The profits of firm 1 are given by:

The profits of firm 2 are given by:

These imply the first-order conditions of:

(1)  c + t + p2* – 2p1* = 0

(2)  c + t + p1* – 2p2* = 0 .

Solving yields:

p1* = c + t;       p2* = c + t .


