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Definition: An n-player, static game of complete information consists of
an n-tuple of strategy sets and an n-tuple of payoff functions, denoted by

G=1S,, ... Sty ... u,)

b no°

S, the strategy set of player i, is the set of all permissible moves for player i.

We write s; € S, for one of player i’s strategies.

u,, the payoff function of player i, is the utility, profit, etc. for player 7, and

depends on the strategies chosen by all the players: u(s, ...

) 8,)-




Example: Prisoners’ Dilemma

Remain Silent

Prisoner I
Confess

Prisoner 11

Remain Silent Confess
-1,-1 -5,0
0,-5 4 .4

Example: Battle of the Sexes

Boxing

Ballet

Boxing Ballet
2,1 0,0
0,0 1,2




Definition: A Nash equilibrium of G (in pure strategies) consists of a strategy
for every player with the property that no player can improve her payoff by
unilaterally deviating:

(s;*, ..., s,*) with the property that, for every player i:

%k % % £ %k
w; (%, o8, 8 s, 8,)

* * * *
> u (507, 8% S, S, 8, )

for all s; € S,

Equivalently, a Nash equilibrium is a mutual best response. That is, for every
player 7, s;* is a solution to:

S, eargr?ax{u,.(s1 s s Sy 881 e, S, )}
S €9

Example: Prisoners’ Dilemma

Prisoner 11

Remain Silent Confess

Remain Silent -1,-1 5,0

Prisoner I
Confess 0,-5 -4 .,-4




Example: Battle of the Sexes

F
Boxing Ballet
Boxing 2,1 0,0
M
Ballet 0,0 1,2

(a)
(b)
(©)
(d)

Cournot (1838) Model of Oligopoly

n firms

Each firm i has a constant marginal (and average) cost of ¢,

Inverse aggregate demand function of P(Q)

Each firm simultaneously and independently selects a strategy consisting of a
quantity q, € [0, a] (where P(a) = 0)

Then, with two firms, the payoff functions are:

”1(91»%) = %P(% +q2)_c1q1
7[2(%9%) = %P(% +Q2)_cz% .

and the strategy sets are:

S, =10, a] S, =10, a]

It is often also convenient to assume a common marginal cost (i.e., ¢, =c=c¢,) and
a linear demand curve P(Q) =a — Q.




Solution of Cournot Model with Two Firms

(q,*, ¢,™) 1s a Nash equilibrium if and only if:
q,* solves max{q, [P(q, + g,*) — c]}
7
and
q,* solves n}]ezlx{qz [P(q,* +¢5) —c]}.
With P(Q) = a — Q, we get first order conditions:
ql(_l) +a- q,— qZ* B C|KI1 =q1* =0
2> (1) a-29*-g,*=c
and:g,(-1) +a—q* ~ g~ ],
2> @) a-q*-2¢,*=c
Subtracting (1) — (2) gives:
*—q,*=0
Substituting ¢,* = ¢, * into (1) gives:

a-2q*-q*=c

*_a_c. *_a—C
9. = 3 ° 49" = 3

=0

Best Response for Firm 1 to ¢,

Original demand curve
/ D(p)=a-p

) Residual demand curve after ¢,
Dpp)=a-q,-p

(a—qz—c a—q,+c

(afquc,c)

a—q,—c

Ry(qy) =22
Similarly, the best response for firm 2 to ¢, is:

a—q,—c¢
Ryfgy) = *=2=¢




Ri(q,)

q,

Ry(qy)

0 q, a—c

Cournot Duopoly: Best Response Functions

Bertrand (1883) Model of Oligopoly

(a) n firms

(b) Each firm i has a constant marginal (and average) cost of ¢,

) Aggregate demand function of Q(P)

(d) Each firm simultaneously and independently selects a strategy consisting of a
price p; € [0, a] (where O(a) = 0)

Then, with two firms, the payoff functions are:
Q(pl)[pl_cl]a if P <D
72'1(]71;]93): %Q(pl)[pl_cl]a if P =P,
0, if p,>p,
and
Q(pz)[pz —Cz], if P, <p
ﬂz(pppz): %Q(pz)[pz_cz]v if P,=D
0, if p,>p,




Bertrand (1883) Model of Oligopoly

As in the Cournot game, the strategy sets are:
S, =10, a] S, =10, a]
and it is again usually convenient to assume a common marginal cost (i.e., ¢, =c=c,).

The unique solution of the Bertrand game with two firms and common
marginal cost ¢, = ¢ = ¢, is as follows:

Bertrand (1883) Model of Oligopoly

Observation 1: In any Nash equilibrium (p,*, p,*), it must be the case that p,* > ¢ and
*
p, 2¢C.

Proof: Suppose otherwise. Without loss of generality, say p,* < p,* and p,* < c. Then
firm 1 is currently earning strictly negative profits and could profitably deviate to p,* > ¢
(thereby instead earning nonnegative profits).




Bertrand (1883) Model of Oligopoly

Observation 2: In any Nash equilibrium (p,*, p,*), it must be the case that p,* = p,*.

Proof: Suppose otherwise. Without loss of generality, say p,* <p,* (and p,* > ¢). Then
firm 2 is currently earning zero profits and, if p,* > ¢, firm 2 can profitably deviate to
p,* = p," — e Meanwhile, if p,* = ¢, firm 1 can profitably deviate to p,* = p,* —¢.

Bertrand (1883) Model of Oligopoly

Observation 3: The unique Nash equilibrium is (p,*, p,*) = (¢, ¢).

Proof: By Observations 1 and 2, the only remaining possibility is p,* = p* = p,” > c. Then
each firm is currently earning profits of: LQ(p")[p" —c]

and either firm could profitably deviate to p* — ¢ and thereby come arbitrarily close to
earning: O(p )[p —cl.
Q.E.D.




The Pollution Game

Consumers have a choice of three different models of cars, which are identical in
all respects except for price and emissions:

Model A: pa=$25,000; e, =100 units

Model B: P = $26,000; ey =10 units

Model C: Ppe=$27,000; e. =0 units

A consumer’s utility from using a car is given by:
U=v-p-FE

where v = reservation value of a car;
p = price paid for model bought;
N
E= Ze,. = aggregate emissions (over all consumers)
=l where e; = 100 or 10 or 0, depending on

which model is purchased by consumer i.

For any number of players, N, satisfying 11 < N <100, the societal optimal choice
is for every player to purchase Model B. Calculate:

U. if every player purchases Model A =
=(v—25,000—F)
= (v—25,000 — 100N)

U. if every player purchases Model B =
=(v—26,000 - E)
= (v—26,000 — 10N)

U, if every player purchases Model C =
=(v—-27,000 - E)
= (v—27,000)

For example:

U. if every player purchases Model A — U, if every player purchases Model B =

= (v — 25,000 — 100N) — (v — 26,000 — 10N) < 0
> 1,000-90N<0 = N> 11




However, let E_; denote the total emissions from all of player i’s opponents.
Then:

U; from Model A — U, from Model B =
=(v—-25,000—E; —100)—(v—26,000-E ; —10)
= 1,000 -90
=910

and:

U, from Model B — U, from Model C =
=(v—-26,000—F;, —10)—(v—27,000—E ; —0)
=1,000-10
=990

In conclusion, irrespective of the choices made by the other players, player i gets a
higher payoff from Model A than from Model B, and player i gets a higher payoff
from Model B than from Model C.

Dominated strategies:

Strategy s, (strictly) dominates strategy s, if, for all possible strategy combinations

of opponents, s, yields a (strictly) higher payoff than s, to player i.

Iterated elimination of strictly dominated strategies:

Eliminate all strategies that are strictly dominated, relative to opponents’ strategies

that have not yet been eliminated.




A few more notes on the Pollution Game.

This is a classic example of an externality: a situation where one player’s action
enters directly into another player’s payoff function.

Broadly speaking, externalities can be addressed with either standards or taxes.
The appropriate standard in this model: it is only legal to sell Model B (or better).
How do you calculate the appropriate tax?

The private cost of Model A (instead of Model B) =100 — 10 =90

The social cost of Model A (instead of Model B) = (100 — 10) x N =90N

The appropriate tax is the difference between the social cost and the private cost,
here 90(N —1).

This is the amount that leads the decision maker to internalize the externality.

Approximately the same outcome can be reached with a tax on Model A or with a
subsidy on Model B. However, there may be general equilibrium effects.

Dominated strategies:

Strategy s, (strictly) dominates strategy s, if, for all possible strategy combinations
of opponents, s, yields a (strictly) higher payoff than s, to player i.

Iterated elimination of strictly dominated strategies:

Eliminate all strategies that are strictly dominated, relative to opponents’ strategies
that have not yet been eliminated.




Example: Prisoners’ Dilemma

Prisoner 11

Remain Silent Confess

Remain Silent -1,-1 5,0

Prisoner I
Confess 0,-5 4,4
Player 11

Left Right

Top 152 45

Player 1 Middle 3,2 2,1

Bottom 251 153

Bottom is strictly dominated by Middle (for Player I)
Right is strictly dominated by Left (for Player II)
Top is strictly dominated by Middle (for Player I)




Results on Iterated Elimination of Strictly Dominated Strategies

Proposition 1: If iterated elimination of strictly dominated strategies yields a
unique strategy n-tuple, then this strategy n-tuple is the unique Nash equilibrium
(and it is a strict Nash equilibrium). [See Gibbons text, pp. 12 — 14.]

(Definition: A strict Nash equilibrium is a strategy n-tuple with the property
that every unilateral deviation makes the deviator strictly worse off.)

Proposition 2: Every Nash equilibrium survives iterated elimination of strictly
dominated strategies.

Proposition 3: Iterated elimination of strictly dominated strategies is order-
independent.

Proposition 2: Every Nash equilibrium survives iterated elimination of strictly
dominated strategies.

Proof: Suppose not. Then there is a Nash equilibrium s* = (5,7, ..., s,", ..., s,") that
gets eliminated. Without loss of generality, assume that s;" is the first component of s*
that is eliminated. Let us say that when s,” is eliminated, it is eliminated by s,'. Then
ULSys e s Sy oee s S) > ULSyy ooy S, ..o, s,) for each (s, ..., Sy, S5 .- 5 5,) that can
be constructed from strategies that have not yet been eliminated. In particular, since
s;” was assumed to be the first component of s* to be eliminated, we can select

(51%, -e 581 Sy » -+ » 5, ) for the opponents’ strategies. This implies that:
* * * * *
US|y s ooy Sy ey S, ) UL(S) s S, Sy, ),

*

i.e., s/ is a profitable unilateral deviation for i against (s,", ..., 5,1%, S;11 5 - » S, "),
contradicting our hypothesis that s* is a Nash equilibrium. [ |




Guess 2/3 of the Average

Each of you have to choose an integer between 0 and 9, with the objective of guessing
“2/3 of the average of the responses given by all students in the course”.

Each student who guesses an integer which is closest to 2/3 of the average of all of the
responses rounded up to the nearest integer, wins. The winners equally divide a prize.

What is your guess?

M=l e RIEN e NN RV, I = SN VS I I O B )




0 1 2 3 4 ) 6 /

v
1
2
-4
5
9

1

1(93)
q>
Ry(q,)
0 94 1

Cournot Duopoly: Best Response Functions




Ri(q,)

9

Ry(qy)

0 q, 1
q, > "2 1s strictly dominated by ¢, = >
q, > Y2 1s strictly dominated by ¢, = 2
q, < Y is strictly dominated by ¢, = %
q, < Ya1s strictly dominated by ¢, = Y4

Example: Matching Pennies

I

Heads 1,-1 1,1

Tails -1, 1 1,-1




Definition: Let player i have K pure strategies available. Then a mixed strategy
for player i 1s a probability distribution over those K strategies.

Notation:
Strategy set:
A .
Mixed strategy:
P =Py Py)
K
such that Z P =1
k=1
and each p;, is between zero and one (0 <p,, < 1).
Facts:

1. Theorem (Nash, 1950):
Every finite game has at least one Nash equilibrium (when mixed
strategies are permitted).

2. If, in a mixed-strategy Nash equilibrium, player i places positive
probability on each of two strategies, then player i must be indifferent
between these two strategies (i.e., they yield player i the same expected

payoff).




Let ¢ denote the probability with which Player I plays H,
and let r denote the probability with which Player II plays H.

Heads Lol s 1 We will solve for the NE by determining the value of » that
makes Player I indifferent between H and T, and the value
of ¢ that makes Player II indifferent between H and T.
EUMH)=r()+(1-r(1)=2r-1.
EU(T) = r(-1)+ (1 - (1) =1 - 2r.
Player I is indifferent between H and T if and only if:
EUMH)=EU(T) €>2r-1=1-2r €>r="%.
Similarly:
EUy(H) = g(-1) + (1 - q)(1) = 1 - 24.
EU(T) = (1) + (1 - g)(~1) =2q — 1.
Player II is indifferent between H and T if and only if:
EU,(H) =BU(T) €>1-2g=2¢— 1 €>q="%.

Tails -1, 1 1,-1

Probability Player 2
Plays Heads
r

(Heads) 1
: *(q) Probability

(Tails) W EEEEEEEEEEEEEEEEEEEEDR Player 1
A 1 q Plays Heads

(Tails) (Heads)

Best response correspondence of Player 2




Probability Player 2

Plays Heads
r
(Heads) 1
*(r :
R @),
. Probability
(Tails) Player 1
1 q Plays Heads
(Tails) (Heads)
Best response correspondence of Player 1
Probability Player 2
Plays Heads
r
(Heads) 1  [reesssvesssvsmsenees T
: *r) i
1/2 CRRELELERELEEEEEEE LR E --------- -q- . -(-2 ......
: . r* (q) Probability
(Tails) =~ ——F——— feeseasessessesssnsenss Player 1
Vs 1 q Plays Heads
(Tails) (Heads)

Matching Pennies




Example: Battle of the Sexes
F
Boxing Ballet
Boxing 2,1 0,0
M
Ballet 0,0 1,2
F
_—— Badics Let g denote the probability with which M plays Boxing,
¢ and let r denote the probability with which F plays Boxing.
Boxing 2,1 0,0 We will solve for the NE by determining the value of » that
M Ballet 00 L makes M indifferent between Boxing and Ballet, and the value
o ’ ' of ¢ that makes F indifferent between Boxing and Ballet.

EUy(Boxing) = r(2) + (1 — r)(0) = 2r.
EU,(Ballet) =r(0)+(1-r)(1)=1-r.

M is indifferent between Boxing and Ballet if and only if:
EUy(Boxing) = EU,,(Ballet) €2 2r=1—-r €>»r=1/3 .

Similarly:

EUg(Boxing) = ¢(1) + (1 - ¢)(0) =g.
EU(Ballet) =¢q(0)+ (1 -¢)(2)=2-2q.

F is indifferent between Boxing and Ballet if and only if:
EU(Boxing) = EUp(Ballet) €2 ¢=2-2q € g=2/3.




Probability Player F

Plays Boxing
r

(Boxing) 1 T e .

Lo |essssnssnnnnnnnnnnnnnnnnns Basnusnnnnnnnnnnt

. . Probability
(B allet) llllllllllllllllllllllllll L3 Player M
% 1 q Plays Boxing
(Ballet) (Boxing)

Battle of the Sexes

Correlated Equilibrium I: Public Randomizing Device

29

Suppose that there exists a public randomizing device that comes up “heads
2 the time and “‘tails” 7 the time.

Then the players could agree to play {Boxing, Boxing} when “heads” and
{Ballet, Ballet} when “tails”.

Example: Play {Boxing, Boxing} when the closing DJIA is an even number and
play {Ballet, Ballet} when it is an odd number; achieving E payoffs of (3/2, 3/2)
— better than the mixed strategy Nash equilibrium.

F
Boxing Ballet

Boxing 2,1 0,0
Ballet 0,0 1,2

M




Correlated Equilibrium II: Mediated communication

Consider the following game:

11
L R
. T 5,1 0,0
B 4,4 1,5

A public randomizing device of 2 — %2 enables us to obtain expected payofts of (3, 3).

However, a mediator could randomize among three instructions — (T,L), (B,L) and (B,R).
The mediator tells player I whether to play T or B (but not what he has told player II).
Similarly, he tells player I whether to play L or R (but not what he has told player I).

It can be shown: (i) if Prob(T,L) = 1/3, Prob(B,R) = 1/3, and Prob(B,L) = 1/3, then no player
has any incentive to deviate from these instructions; and (ii) E payoffs are now (10/3, 10/3)!

Correlated Equilibrium II: Mediated communication

In greater detail:

11
L R
| T 1/2 0
B 0 172

This is clearly incentive compatible and enables the players to obtain expected payoffs of
(3,3).




Bayes’ Rule

P(A | B) =

(41 B) H(5)
A, B = events

P(A|B) = probability of A given B is true

P(B|A) probability of B given A is true
P(A), P(B) = the independent probabilities of A and B

Correlated Equilibrium II: Mediated communication

In greater detail:

II
L R
| T 1/3 0
B 1/3 1/3
1
By Bayes’ law, Prob (I is told R | Tis told B)= 11 = %
3 3

Meanwhile, Prob (IT is told R | T is told T) = 0.

Hence, player I’s E payoff from playing B when told to play Bis 2 (4)+ 2 (1)=2 .
Player I’s E payoff from playing T when told to play B is also /2 (5) + 2 (0) =2 .
Thus: (i) it is incentive compatible for Player I to follow the mediator’s instructions (and
symmetrically for Player II); and (i1) E payoffs are now (10/3, 10/3)!




Correlated Equilibrium II: Mediated communication

Derivation (limiting attention to symmetric correlated equilibria):

L 1 R
T (1 —p) 0
: B p 72(1 —p)
By Bayes’ law, Prob (I is told R | I is told B) = P%r(%l(_ll—];) .
By Bayes’ law, Prob (II is told L | I is told B) = p+;1-p> .

Optimal correlated equilibrium:

max {p-4+1(1-p)-5+3(1-p)-1

pe[0,1]

st. p-4+5(1-p)-12p-5+1(1-p)-0

Results on correlated equilibrium:

1. With attention limited to public randomizing devices, the set of outcomes
of correlated equilibria is the convex combination of all (pure- and mixed-
strategy) Nash equilibrium outcomes.

2. With mediated communication possible, one can sometimes construct
correlated equilibria that outperform any convex combination of Nash
equilibria—see, for example, the previous slides.




Nash Existence Theorem (Nash, 1950):

Every finite game has at least one Nash equilibrium
(when mixed strategies are permitted).

Definition of finite game:
* Finitely many players; and

* Each player’s strategy set, S,, 1s finite.

Common fixed point theorems in economics:

Banach Fixed Point Theorem (contraction mapping theorem):
Suppose that (X, d) i1s a complete metric space. Also suppose that the function
f: X — Xis a contraction mapping, i.c.,d(f(x), f(y)) < od(x,y) for6<1.
Then there exists a unique fixed point of f, i.e., a point x € X such that x = f(x).

Tarski Fixed Point Theorem:
Suppose that (X, <) is a complete lattice. Also suppose that the function
f: X — Xis monotonic with respect to <. Then there exists a fixed point of f,
1.e., a point x € X such that x = f(x), and the set of fixed points of fin X also

forms a complete lattice under <.




This and next class (Nash existence theorem):

Brouwer Fixed Point Theorem:

Suppose that X is a nonempty, compact, convex set in R". Also suppose
that the function f: X — X is continuous. Then there exists a fixed point
of f, 1.e., a point x € X such that x = f(x).

Kakutani Fixed Point Theorem:
Suppose X as above. Also suppose that the correspondence F : X — X

is nonempty and convex-valued, and that F(+) has a closed graph. Then
there exists a fixed point of F', i.e., a point x € X such thatx € F(x).

Brouwer Fixed Point Thm:

X A
* nonempty -

closed P
* compact < 7
bounded ’

* convex -

e Rn , 7

e function .

\ 4

* maps X > X

e continuous




Brouwer Fixed Point Theorem:

Suppose that X is a nonempty, compact, convex set in R”. Also suppose
that the function f: X — X is continuous. Then there exists a fixed point
of f,i.e., a point x € X such that x = f(x).

Kakutani Fixed Point Theorem:
Suppose X as above. Also suppose that the correspondence F : X —> X
1s nonempty and convex-valued, and that F(-) has a closed graph. Then

there exists a fixed point of F, i.e., a point x € X such thatx € F(x).

Notes:

(1) The correspondence F{(+) is said to have a closed graph if, simply, the graph of
F(-) is a closed set. That is, F(-) has a closed graph if it has the property that whenever
the sequence (X", ") = (x, y), with )" € F(x") for every n, then y € F(x).

Essentially the same as upper hemicontinuity (u.h.c.).




Kakutani Fixed Point Thm:
X y

* nonempty -+

>

closed P
* compact < //
bounded ’

¢ convex Vil

e Rn , 7

* correspondence Vg

* maps X > X

* nonempty- and
convex-valued

* closed graph

v
=

Nash Existence Theorem (Nash, 1950):

Every finite game has at least one Nash equilibrium

(when mixed strategies are permitted).




Notation:
P
Pk,
P,
: Pau
p=|p |=|]|
p:K.
D, :
pr;l
p:z.&'t

The correspondence F: We need:

X
1—)1 BR1 (1—71 ) * nonempty
: : closed
F:| p, |=| BR(p.) . Compact<
: bounded
}—; BR (5.) * convex
' ! N o — Rn
Fixed point: F
* correspondence
peF(p) * maps X > X
implies « nonempty- and
D, € BR(p._,) for all i convex-valued

* closed graph

Nonempty-valued: For best response to exist, we need a

maximum to exist

+ Continuous function on compact set has a maximum; hence, we require:

— closed

— bounded

— continuous

or there may be no max

or there may be no max

Q\>
_/>

or there may be no max

S

S
>




Notes:

(1) The correspondence F{(+) is said to have a closed graph if, simply, the graph of
F(-) is a closed set. That is, F(+) has a closed graph if it has the property that whenever
the sequence (x", y") — (x, ), with )" € F(x") for every n, then y € F(x).

Essentially the same as upper hemicontinuity (u.h.c.).

(2) The best-response correspondence BR,(-) of each player i has a closed graph,
by the following argument.

Suppose that there is a sequence (x", ") — (x, y) such that )" € BR(x") for every n,
but y ¢ BR(x). Then there exists € >0 and ' # y such that:

Uy’ x) > ufy,x) +e.
But this contradicts:
u(y', x") < u(y", x"), for every n.

Example of using Brouwer Fixed Point Thm to prove existence of equilibrium.

Consider an n-firm Cournot game with fairly general demand curves and marginal costs:

g9 = [P(q; + Xq.) —¢;1q;,
making the assumption that arg maxq_ {[P(q; +Zq,) —c;]1q, } 1s always single-valued.

Then we can define X = [0, a]" and use the following f:
% BR,(q_,)

i 4, |—>| BR(q.)

q, BR (q_,)

The Brouwer Fixed Point Theorem guarantees that f has a fixed point.




Product Differentiation: The Hotelling Model

Consumers are uniformly distributed on the interval [0, 1].
There are two firms, located at x = 0 and x = 1, which each
produce the same physical good at marginal cost of c.

Consumers have transportation cost ¢ per unit of distance.

Firm 1 X Firm 2
I I
I J
A cost tx cost #(1 —x) —

Each consumer consumes 0 or 1 units of the good:
w(0)=0; u(l)=w.
If firm 1 charges p, and firm 2 charges p,, the consumer
located at x gets v — p, — tx from purchasing at firm 1 and
gets v — p, — t(1 — x) from purchasing at firm 2.

Let x denote the customer who is indifferent between purchasing at firm 1 and firm 2.
Then:

v-p —tx=v-p, —{(1-X)

2ix=t+p, — p

~_ 1, PP
X = 2+—2{ .

The profits of firm 1 are given by:
- Pr=p
ﬂl(pl,pz):[pl—C]x:[pl—(:][%+ 221 1]-

The profits of firm 2 are given by:

7,(p. py) =[P, — el -3 = [ p, - Ik - 221,

These imply the first-order conditions of:
(1) et+t+p,*=2p*=0
(2) cHi+p*-2p,*=0.
Solving yields:

PF=ct+t;  p,F=cHtt.




